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Project Overview
User code:
def min(a: Rep[Int], b: Rep[Int]) = if (a < b) a else b

val xs = ... // type Rep[Array[Int]]
val res = xs.fold(Int.MaxValue)(min)

Generated code:
int *x16 = .. // input data
int x17 = .. // input length

int x32 = 0x7FFFFFFF;
/*@ loop invariant (0 <= x24 <= x17);

loop invariant \forall int x23;
(0 <= x23 < x24) ==> (x16[x23] >= x32);

loop assigns x24,x32;
loop variant (x17 - x24); */

for (int x24 = 0; x24 < x17; x24++) {
int x29 = x16[x24];
int x31 = x32;
int x33 = 0;
int x34 = x29 < x31;
if (x34) {
x33 = x29;

} else {
x33 = x31;

}
x32 = x33;

}
int x35 = x32; // result

Figure 1: High-level user code in Scala (top)
generates low-level C code (bottom), extended
with automatically inferred annotations that en-
able static verification.

How should we build systems that are performant, secure, and
correct? Today, systems-level software such as network stacks,
databases, and control code in embedded devices is almost always
developed in C. This is suboptimal, for at least two reasons. First,
development is far less agile and productive than in higher level lan-
guages; and second, low-level code in unsafe languages invites se-
curity vulnerabilities.

High-level languages, on the other hand, rule out entire classes
of vulnerabilities through built-in memory safety guarantees, and
many of them provide elaborate mechanisms for programming with
contracts, which enforce user-defined specifications at runtime. But
while implementations of high-level languages have come a long
way, programmers cannot trust them to deliver the same reliable per-
formance as handwritten C code. As a consequence, PL advances
are mostly lost on programmers operating under tight performance
constraints. Sound static verification of general-purpose C code is
possible, but has an extraordinary cost in terms of user annotations,
and is thus rarely done in practice.

State of the Art: Generative Programming for Performance
Motivated by the apparent trade-off between productivity and per-
formance, the PI and other researchers have argued for a rethinking
of the role of high-level languages in performance critical code, with
the goal of allowing developers to leverage high-level programming
abstractions without the hefty price in performance. The shift in per-
spective that enables this vision of “abstraction without regret” is a
properly executed form of generative programming: instead of run-
ning the whole system in a high-level managed language runtime,
the abstraction power of high-level languages can be focused on generating and composing pieces of low-level code—
effectively acting as a glorified macro system.

Generative programming has proven successful for numerical kernels such as FFTs [7], for DSLs in big-data
processing [2], but also in domains like database query engines [6]. In these traditional strongholds of low-level pro-
gramming, generative programming has largely lived up to its promise: programmers reap the benefits of programming
in a high-level language without the low-level language drawbacks.

Proposed Research: Generative Programming for Performance, Security, and Correctness Previous work has
only looked at productivity benefits, not at security and correctness. Since low-level code is still being generated, the
safety guarantees usually associated with high-level languages (e.g. memory safety) do not carry over. And what about
functional correctness? We have to trust the high-level code and the generator, either or both of which might contain
bugs.

The main thrust of this proposal is to demonstrate that “abstraction without regret” holds for security and verifica-
tion in the same way it does for performance. We propose to extend generative programming methods to emit low-level
C code enriched with specifications so that the code can be formally verified using existing C-level verification tools,
as shown in Figure 1.
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Fast and Secure Network Protocols
module / instance lang. LoP LoC # s.
1. Selection Sort Scala 41 115
sorted & in-place permut.
ints by ≤ C 88 26 70 7
ints by ≥ C 88 26 70 7
int pairs by first proj. C 116 43 89 11
int pairs by lex. C 130 52 97 20
int vectors by length C 128 49 109 15
2. Linear Algebra Scala 32 97
misc. safe & spec.
matrix +,×,· C 104 51 101 22
member C 23 22 18 2
index where C 26 17 20 3

Figure 2: Verification effort: lines of proof/specifica-
tion (LoP) & lines of code (LoC) in Scala code genera-
tor and generated C code, which Frama-C verifies using
given number of goals (#) in given seconds (s.).

As particular area of application, we will show that it is pos-
sible to implement a stack of network protocols in a very
high-level programming style, with state-of-the-art perfor-
mance and verified memory safety. Our first focus will be on
the HTTP protocol, but eventually, we plan to extend our ap-
proach towards cryptographic protocols auch as TLS/SSL,
and also towards multiple layers of protocols, alle the way
up from TCP/IP.

Parsing as Attack Vector The area of network protocols
and input parsing is extremely relevant in practice. Working
with untrusted input requires care, and many vulerabilities
arise at this boundary, which are often overlooked. For ex-
ample, after the celebrated static verification of PolarSSL
1.1.8 [9], a remote code execution vulnerability was found
due to a bug in an ASN.1 parser in the X.509 module, which
was not part of the verification effort [1, 8]. Exploitable
bugs in HTTP parsers have been reported for all major web
servers, e.g. Nginx [4] and Apache [3].

parser requests per second
(baseline) nginx (0.94± 0.01) · 106
(our) staged (1.00± 0.01) · 106

Figure 3: HTTP perf. (higher is bet-
ter)

From Fast to Verified We plan to implement a stack of network protocols
from TCP/IP up to and including HTTP and HTTPS in a very high-level
programming style, with state-of-the-art performance and verified memory
safety. In our preliminary work, we used parser generator combinators [5] to
build an HTTP parser that is as fast as Nginx. We show performance results
in Figure 3, comparing to the HTTP parser of Nginx, which is written in C as
well. On a benchmark for parsing HTTP responses and validating the payload
length, our approach is competitive, processing one million items per second.

The key idea behind this proposal is to extend this generative approach to emit specifications along with C code, so
that the generated code can be verified by existing C-level tools. We plan to use Frama-C and the ANSI C Specification
Language (ACSL). We show some preliminary results for verified sorting and linear algebra kernels in Figure 2.
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Data Policy
We intend to publish results of this project at academic
conferences, and to release all developed software arti-
facts as open source under a permissive license.

Budget
Funding is requested for one gradutate student for one
year, including tuition remission, equipment, and travel.

• Personnel - Grad Staff (.50 FTE): $27,797.04
• Employee Benefits - Grad Staff (.50 FTE):

$2,612.92
• Grad Fee Remissions: $10,260.00
• Travel (conferences, domestic and abroad):

$4,000.00
• Equipment (laptop/workstation and cloud comput-

ing resources): $3,000.00
• Total: $37,420.22
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